Newton polygons of L functions of polynomials x+ax
نویسندگان
چکیده
منابع مشابه
Newton Polygons and Families of Polynomials
We consider a continuous family (fs), s ∈ [0, 1] of complex polynomials in two variables with isolated singularities, that are Newton non-degenerate. We suppose that the Euler characteristic of a generic fiber is constant. We firstly prove that the set of critical values at infinity depends continuously on s, and secondly that the degree of the fs is constant (up to an algebraic automorphism of...
متن کاملVARIATION OF p -ADIC NEWTON POLYGONS FOR L-FUNCTIONS OF EXPONENTIAL SUMS
Abstract. In this paper, we continue to develop the systematic decomposition theory [18] for the generic Newton polygon attached to a family of zeta functions over finite fields and more generally a family of L-functions of n-dimensional exponential sums over finite fields. Our aim is to establish a new collapsing decomposition theorem (Theorem 3.7) for the generic Newton polygon. A number of a...
متن کاملCoefficient functions of the Ehrhart quasi-polynomials of rational polygons
In 1976, P. R. Scott characterized the Ehrhart polynomials of convex integral polygons. We study the same question for Ehrhart polynomials and quasi-polynomials of nonintegral convex polygons. Define a pseudo-integral polygon, or PIP, to be a convex rational polygon whose Ehrhart quasipolynomial is a polynomial. The numbers of lattice points on the interior and on the boundary of a PIP determin...
متن کاملNumerical Solution of Fuzzy Polynomials by Newton-Raphson Method
The main purpose of this paper is to find fuzzy root of fuzzy polynomials (if exists) by using Newton-Raphson method. The proposed numerical method has capability to solve fuzzy polynomials as well as algebric ones. For this purpose, by using parametric form of fuzzy coefficients of fuzzy polynomial and Newton-Rphson method we can find its fuzzy roots. Finally, we illustrate our approach by nu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2016
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2015.09.020